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Abstract

A principal wishes to rank and reward teams in an organization, modeled
by cliques in a graph. Agents in the organizational network perfectly observe
the local ranking of their teams, and strictly prefer being on higher-ranking
teams. I show that the only organizations in which the principal can always
extract a complete ranking of teams are those where every pair of teams
shares an agent in common. Unless the organizational network is a star, there
is no ex-post incentive compatible and efficient mechanism that ranks every
team. By considering a subset of teams, the set of admissible organizations
can expand.
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1 Introduction

Collaboration and teamwork are at the heart of organizational structures. Team-
based rewards, which can take the form of project-specific compensation, profit-
sharing, and one-time team bonuses,1 have become widespread in corporate incentive
schemes.2 In addition to this, it is increasingly common for individuals to work on
multiple teams within the same organization.3 Beyond corporate settings, there are
numerous situations where individuals can belong to different teams that compete
against each other for a prize: a manager wants to identify the hardest-working
teams in her department; a teacher wishes to reward the most collaborative groups
of students in the classroom; a conference aims to recognize the most prolific co-
authors in a field. Succinctly, these situations all share the following characteristics:
(i) A principal is interested in ranking and rewarding teams, rather than individuals,
(ii) Agents can be in many teams at once, and (iii) Agents benefit from being on
higher-ranking teams.

When can the principal obtain a complete and honest ranking of the teams in her
organization? And how does the structure of the organization affect the principal’s
ability to design a desirable ranking mechanism? The existing literature on peer
mechanisms has exclusively considered comparing individuals.4 In the standard
setting, agents may be asked to evaluate, nominate, or rank their peers in order to
determine the allocation of a prize. For instance, if agents are asked to rank their
neighbors in a social network, Bloch and Olckers (2022) show that a principal can
design an incentive compatible peer ranking mechanism for a fairly large class of
networks. A natural question, therefore, is whether similar results can be obtained

1For several decades, a vast body of empirical research in management science and organizational
psychology has advocated for the use of adequately designed team-based rewards (DeMatteo
et al., 1998; Lawler and Cohen, 1992). In settings where production is highly interdependent,
team-based rewards can enhance performance (Boning et al., 2007; Friebel et al., 2017; Englmaier
et al., 2024), promote motivation (Garbers and Konradt, 2014), and increase pro-social behavior
between team members (Bamberger and Levi, 2009).

2“The University of Southern California’s Center for Effective Organizations indicates that 85%
of Fortune 1000 companies used team-based pay to some degree in 2005, up from 59% in 1990”
(Merriman, 2008)

3“Research estimates that between 81% and 95% of employees around the world actively serve on
multiple teams simultaneously.” (Smith et al., 2018)

4See Olckers and Walsh (2024) for a comprehensive survey on peer mechanisms spanning economics
and computer science.
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when the focus is shifted from individual rankings to team rankings.
In this paper, I consider the problem of a principal who wants to rank every group

of co-workers in an organization, represented by cliques (complete subgraphs) in an
organizational network. More specifically, she wishes to get a complete ranking
of these teams based on a single unobservable characteristic, such as work ethic,
potential, productivity, or financial need. To do so, she asks each agent to report
a ranking of his teams. Agents in the organizational network perfectly observe the
local ranking of the teams they are in, and strictly prefer being on higher-ranking
teams in order to receive a greater reward.5 If aggregating reports fails to yield a
complete ordering of teams, the mechanism completes the partial order by arbitrarily
ranking the remaining teams.

To simplify the analysis, I begin by identifying all network structures in which
aggregating local comparisons results in a complete ranking of teams for any real-
ization of team characteristics, and refer to such graphs as clique informative. My
first result states that this condition is satisfied if and only if every pair of teams in
the organization shares an agent in common. An equivalent characterization shows
that clique informativeness is only satisfied by two networks: the triangle and the
star graph.

The main result, Theorem 1, states that unless the organizational network is
shaped like a star, there is no ex-post incentive compatible and efficient mechanism
that ranks every group of co-workers. The key insight is that if agents are indiffer-
ent to permutations of their teams’ ranks, they may be willing to decrease one of
their teams’ ranks if it leads to a more-than-proportional increase in another of their
teams’ ranks. Concretely, agents can manipulate the ranking either by completing
an incomplete order, or by creating an incompletion and causing an arbitrary rank-
ing of teams in the agent’s favor. Notably, this type of misreporting differs from
manipulation in individual peer evaluation problems, where agents typically have a
direct incentive to exaggerate their ranking relative to their neighbors’, as well as
an indirect incentive to under-evaluate agents who are likely to win the prize.

Two extensions are considered. First, I ask what would happen if instead of
assigning better prizes to higher-ranking teams, the principal gave identical prizes

5Even in the absence of monetary rewards, the disclosure of team rankings in an organization can
have a significant effect on the behavior of teams and individuals (Bandiera et al., 2013).
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to the k highest-ranking teams. Faced with this type of mechanism, an agent now
attempts to maximize the number of winning teams he is on. Despite this change
in incentives, I show that adopting a coarser ranking leaves Theorem 1 essentially
unchanged. Next, I relax the principal’s objective by considering mechanisms that
rank an arbitrary subset of teams in the organization. One advantage of this ap-
proach is the potential increase in overlapping team comparisons, which aids the
principal in the construction of truthtelling incentives. On the flip side, the same
organizational network can now be associated with multiple configurations of teams,
making the analysis considerably less tractable. Nevertheless, I identify two simple
sufficient conditions for the existence of a team ranking mechanism that are likely
to be met by many real-world organizations: either there exists an agent who is a
member of every team (a supervisor, or manager condition), or, whenever two teams
share an agent in common they share at least two agents in common (a collaboration
condition). The latter of these conditions ensures that every comparison is made
by multiple agents. Intuitively, this allows the principal to verify that an agent’s
report matches his colleague’s and to punish him otherwise.

Related Literature. This paper directly contributes to an emerging literature at
the intersection of peer evaluations and social networks, in which agents can only
evaluate those they share a connection with (Baumann, 2023; Baumann and Dutta,
2022; Babichenko et al., 2020; Bloch and Olckers, 2021, 2022). Within this literature,
I largely follow the approach in Bloch and Olckers (2022), where a principal wishes
to extract a complete and ordinal ranking of agents in a social network. Their
main result states that a mechanism exists if and only if every pair of friends has a
friend in common. By contrast, I exclusively consider the problem of ranking teams
of agents. By treating cliques rather than nodes as the main object of interest,
I obtain considerably fewer informative networks than those found in Bloch and
Olckers (2022). More surprisingly, I show that the star graph is the unique network
that admits a desirable team ranking mechanism, a strong negative result when
contrasted with friend-based rankings.

More broadly, this paper is conceptually related to the literature on impartial
peer mechanisms initiated by Amorós et al. (2002), De Clippel et al. (2008) and Holz-
man and Moulin (2013) in economics, and Alon et al. (2011) in computer science.
Thematically, this literature encompasses a wide range of design issues, including the
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analysis of peer nomination rules (Fischer and Klimm, 2014; Tamura and Ohseto,
2014; Mackenzie, 2015; Edelman and Por, 2021), peer grading systems (De Alfaro
and Shavlovsky, 2014; Kurokawa et al., 2015; Aziz et al., 2016, 2019; Dhull et al.,
2022), and most pertinent to us, peer ranking mechanisms (Kahng et al., 2018;
Xu et al., 2019; Stelmakh et al., 2021; Alcalde-Unzu et al., 2022; Lev et al., 2023;
Amorós, 2023; Cembrano et al., 2023). While the majority of these works consider
strategy-proof mechanisms, I find that even ex-post incentive compatibility cannot
be sustained in most networks, suggesting large differences in the incentive environ-
ment. To the best of my knowledge, this is the first paper to consider situations
where agents evaluate their teams rather than their peers.

The paper is arranged as follows. Section 2 describes the team ranking problem.
Section 3 characterizes all clique informative networks. Section 4 presents the main
result on team ranking mechanisms, and Section 5 extends the analysis to subsets
of teams. Section 6 offers concluding remarks. All proofs are in the Appendix.

2 Model

A finite set of agents N = {1, 2, ..., n} with n ≥ 3 is organized in a connected and
undirected graph g whose structure is common knowledge, and we write gij = 1
if agents i and j are linked. Denote by Ni = {j ∈ N | gij = 1} the set of agent
i’s neighbors, or colleagues, and let di = |Ni| be the degree of agent i. Next, let
C = {C1, ..., Cm} be the set of all cliques (complete subgraphs) in g with two or more
nodes. For the remainder of the paper, I will refer to each element of C as a team of
co-workers. Abusing notation, we can write i ∈ Cj if agent i is a node in team Cj,
and define Ci = {Cj ∈ C | i ∈ Cj} as the set of teams that agent i belongs to. By
connectedness of g we have di ≥ 1 for every i ∈ N , and since connected pairs make
up the smallest teams this implies that every agent is part of at least one team.

Each team Cj possesses a single characteristic of interest, δj ∈ R, and I assume
that there are no ties: δl ̸= δm for any distinct teams (Cl, Cm). Concretely, δj could
represent a team’s synergy, work-ethic, or financial need. Conceptually, a team’s
characteristic can be entirely distinct from the characteristics of the agents in the
team. For instance, a team may surpass another in its share of skilled agents while
being less productive due to a lack of chemistry.
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The analysis is completely ordinal. Each agent does not directly observe the
characteristics of his teams, but perfectly observes the local ranking of his teams.
For any agent i and any pair of teams (Cl, Cm), let ti

lm = 1 if agent i observes
δl > δm, ti

lm = −1 if he observes δl < δm, and ti
lm = 0 if he cannot compare teams

Cl and Cm. The last scenario can arise if agent i is part of team Cm but not Cl,
Cl but not Cm, or neither Cm nor Cl. Agent i’s type is summarized by the matrix
T i = [ti

lm]. Aggregating these matrices across agents, the vector T = (T 1, ..., T n)
contains all the information available on team rankings in the organization. Based
on T, one can define a partial order as follows: Cl ≻T Cm if ti

lm ̸= −1 for all agents
i, there is no sequence of comparisons indicating δm > δl by transitivity, and there
exists either an agent i reporting ti

lm = 1 or a sequence of comparisons indicating
δl > δm by transitivity.

A deterministic team ranking mechanism is a pair (T, σ) that assigns a complete
ranking σ ∈ S to any vector of reported team rankings T ∈ T n, where S is the
set of all complete orders on C. Mechanically, this procedure assigns a rank σj to
each team Cj, where the worst rank is σj = 1 and the best rank is σj = |C|. In a
similar fashion, I define the rank of an agent i who is part of k teams as the ordered
vector σi = (σ1, σ2, ..., σk), where σ1, σ2, ..., σk are ordered from highest ranked to
lowest ranked. Given two possible ranks σi, σ̃i, agents have strongly monotonic
preferences:6

if σi ≥ σ̃i, and σi ̸= σ̃i, then σi ≻i σ̃i

Thus, an agent i prefers σi over σ̃i if the highest ranked team in σi is at least
as highly ranked as the highest ranked team in σ̃i, the second-highest ranked team
in σi is at least as highly ranked as the second-highest ranked team in σ̃i, etc. with
at least one of these comparisons holding strictly. Importantly, this assumes that
agents are indifferent to substitutions across their teams’ ranks.7

It is worth noting that strong monotonicity is not required for any of the results.
Rather, it is the “weakest” condition on preferences with which I am still able

6Equivalently, i prefers the unordered vector σi to σ̃i if σi weakly majorizes σ̃i.
7This is a reasonable assumption when prizes are not divided among team members, and do not
depend on group size. For instance, a principal might distribute a bonus payment to every member
of a winning team, assign winning teams to more desirable projects, or supply a public good that
can be enjoyed by all team members.
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derive the main impossibility result. In particular, the proofs remain valid if agents
have lexicographic preferences, value the minimum of team ranks, the sum of team
ranks (in case of monetary prizes), or the average team rank (in case of qualitative
rewards).8

Throughout, I consider team ranking mechanisms that satisfy the following:

Definition 1. A team ranking mechanism σ is ex-post efficient if for any pairs of
teams (Cl, Cm) and any vector T:

if Cl ≻T Cm, then σl(T) > σm(T)

Definition 2. A team ranking mechanism σ is ex-post incentive compatible if for
any agent i, any vector T = (T i, T −i), and any alternative report T̃ i:

σi(T i, T −i) ≿i σi(T̃ i, T −i)

3 Organizational Networks

As a preliminary question, when can a principal be sure to extract a complete
ranking of teams from the local information at each agent’s disposal? In the current
setting, even if the principal had access to every agent’s observations, she may still
be unable to compare certain teams in the organization. Borrowing terminology
from Bloch and Olckers (2022), I refer to a network as clique informative if for any
realization of characteristics δ, the information in T results in a complete ranking
of cliques.9 As the next example shows, connectedness and informativeness are
unrelated in this setting.

Example 1. A complete network need not be clique informative. Consider the
complete graph in Figure 1, where C1, C2, C3, C4, C5, C6 respectively denote teams
(i, j), (j, k), (k, l), (i, l), (i, k), (j, l). Now consider the following realization of team

8One exception is if agents have max preferences, in which case Theorem 1 would change slightly:
both the triangle and the star admit a team ranking mechanism.

9A similar question is discussed in Bloch and Olckers (2022), in the context of constructing a com-
plete ranking of individuals in a social network. To ensure that aggregating local comparisons
always results in a complete ordering of individuals—a property they term completely informa-
tive—they show that every pair of individuals in the network must either be connected or have a
mutual connection.
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Figure 1: The complete graph K4 is not clique informative

characteristics: δ1 > δ3 > δ6 > δ5 > δ2 > δ4. Note that for clarity of exposition,
we have restricted our attention to teams of pairs, omitting 3-cliques and 4-cliques.
Based on each agent’s information, agent i observes C1 ≻T i C5 ≻T i C4, agent j

observes C1 ≻T j C6 ≻T j C2, agent k observes C3 ≻T k C5 ≻T k C2 and agent l

observes C3 ≻T l C6 ≻T l C4. Overall, the information in T does not allow us to
compare teams C1 and C3, teams C2 and C4, and teams C5 and C6.

The takeaway is there is no systematic relationship between connectedness and
informativeness in this setting, simply because it is impossible to increase the number
of edges (observations) in a graph without increasing its number of cliques (teams).
The following lemma provides necessary and sufficient conditions for clique infor-
mativeness.

Lemma 1. A network is clique informative if and only if every pair of cliques shares
a node in common.

This result is based on the fact that whenever two cliques do not share a common
node, it is possible to find a vector of team characteristics for which the two cliques
cannot be compared.10 As a consequence of this lemma, note that every clique
informative network is completely informative (in the sense of Bloch and Olckers
(2022)). An immediate and useful corollary states that every clique informative
network is either a triangle or a star.

Corollary 1. A network is clique informative if and only if it is a triangle or a
star.
10The same argument appears in Bloch and Olckers (2022) to characterize completely informative

networks.
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The intuition for this is straightforward. First, observe that any connected graph
with three nodes is either a triangle or a star. For graphs with four or more nodes,
one can use the fact that any connected graph that is not a star must have an
open path of length three. For any such graph, the first and last edge on this
path make up two cliques that do not share a node in common, which violates
clique informativeness by the previous lemma. Hence, any connected and clique
informative graph of size four or greater must be a star.

4 Ranking All Teams

We are now ready to analyze the mechanism design problem faced by the principal.
Specifically, when can the principal design an ex-post incentive compatible and
efficient mechanism that assigns a rank to every team in the organizational network?
Here we have in mind situations where it is useful to view each clique as a team in
its own right. For example, when assessing the chemistry of co-author groups, one
accounts for the possibility that a pair of researchers only works well together when
joined by a third colleague. The general problem of ranking any subset of cliques is
tackled in Section 5.

To start, recall that agents can manipulate the ranking in one of two ways: either
by completing a partial order, or, by making two teams that were originally com-
parable, uncomparable. I provide some intuition for the former of these situations
in Figure 2, in the case of a simple line graph with four nodes.

i j k l
C1 C2 C3

Figure 2: Three teams of pairs

Example 2. Let (δ1, δ2, δ3) denote the characteristics of teams (i, j), (j, k) and (k, l)
respectively, and suppose we have: δ2 > δ3 > δ1. As was alluded to after Corollary
1, the presence of an open path of length three or greater allows for the possibility of
an incomplete ranking to arise. In this particular case, it is impossible to compare
teams C1 and C3. Since the mechanism must map any vector T to a complete order,
the principal has to assign an arbitrary ranking between C1 and C3 while respecting
C2’s relative ranking in ≻T. Without loss of generality, suppose that if the principal
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is unable to compare two teams, she assigns a higher rank to the team with the
highest index.11 Under truthful reporting, agent j will be on the first team (team
C2) and the third team (team C1). Notice, however, that agent j stands to gain
from switching his report, assuming that k’s report is truthful. By switching his
report from C2 ≻T j C1 to C1 ≻T̃ j C2, agent j now guarantees that he will be on the
first team (team C1) and the second team (team C2). Crucially, some realizations
of δ will prevent the principal from detecting agent j if he chooses to lie.

A formalization of this argument is enough to rule out the construction of an
ex-post incentive compatible and efficient mechanism in all but one network archi-
tecture. To see this, recall that every non clique informative graph must include an
open path of length three like the one in Figure 2, which renders it prone to manipu-
lation. By Corollary 1, the only remaining networks to consider are the triangle and
star graphs. For the triangle graph, the proof in the Appendix shows that certain
agents can create a cycle and obtain a higher rank by doing so. If the graph is a
star, the only agent capable of making comparisons is the central node. But since
a central agent belongs to every team, he is indifferent to all rankings and thus has
no incentive to misreport. These insights are captured by the main result, which
characterizes the star network as the unique organizational structure that admits a
team ranking mechanism.

Theorem 1. An organizational network g admits an ex-post incentive compatible
and efficient team ranking mechanism if and only if g is a star.

The sufficiency portion of this theorem relies on identifying realizations of δ for
which an agent can profitably misreport without getting caught.12 Critically, this
procedure is made possible by the lack of overlapping team comparisons. This is
especially true when ranking consecutive edges in a network, where only a single
agent is capable of making the comparison. In fact, the result would also hold if
instead of considering every clique in C, we considered any subset of cliques that
includes all connected pairs.

11The argument does not rely on this particular arbitrary rule, as is shown in the Appendix.
12Since the proof only relies on specific realizations of δ, the result remains true if we allowed ties

in team characteristics. Since agents have perfect local observations, the result is also robust to
any correlation structure between teams.
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One reasonable concern is whether this result could be affected by the coarseness
of the principal’s ranking. Suppose that instead of assigning better prizes to higher-
ranking teams, the principal chooses to implement a team selection mechanism that
simply assigns a prize to the k highest-ranking teams in C (similar in spirit to Lev
et al. (2023) and Bloch and Olckers (2021)). Under this new ranking scheme, an
agent i prefers σi over σ̃i if and only if the number of teams with rank σj ≥ m−k+1
is greater in σi than in σ̃i (where m = |C|). The next result shows that adopting a
coarser ranking leaves our previous theorem virtually unchanged.

Theorem 2. If σ selects k > 1 winning teams, there exists an ex-post incentive
compatible and efficient team selection mechanism if and only if the network g is a
star. If σ selects a single winner, there exists an ex-post incentive compatible and
efficient team selection mechanism if and only if the network g is a triangle or a
star.

For team selection mechanisms that select two or more winning teams, similar
constructions of δ to those used in the proof of Theorem 1 reveal that certain
agents can increase the number of winning teams they are on by misreporting.
In the special case where the mechanism only awards the prize to the highest-
ranking team, the triangle no longer fails to admit a mechanism. This is because
the counterexample previously used to rule out mechanisms in the triangle showed
that successful misreporting takes the form of a cycle among pairs. Note, however,
that an agent is capable of inducing a cycle only if he belongs to the highest-ranking
pair. Therefore, any agent capable of creating a cycle must already be on the winning
team and has no incentive to misreport.

5 Ranking a Subset of Teams

Is it possible to expand the set of organizations that admit a team ranking mech-
anism by discarding certain cliques from the analysis? In most applications, it is
unlikely that the principal will want to compare each and every clique in a social net-
work. Due to equity concerns, a manager may only be interested in ranking teams
that are large enough, and can choose to omit smaller teams from her rankings.
In other contexts, it may be appropriate to exclusively consider maximal cliques as
proper teams.
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Given a set of agents N , a principal is now interested in ranking an arbitrary
set of teams G, each element of which is a set of two or more agents. Equivalently,
one can always view G as a subset of C, where an edge is drawn between two agents
if they have a mutual team. Call an organization (N, G) informative if for any
realization of δ the information in T results in a complete order ≻T. By the same
logic as Lemma 1, note that if two teams do not share an agent in common one can
find a realization of characteristics for which the two teams cannot be compared.
Thus, an organization (N, G) is informative if and only if every pair of teams shares
an agent in common.

Depending on the structure of teams in G, the principal may also end up with a
higher proportion of comparisons made by multiple agents. For these specific com-
parisons, she can now detect and punish agents who send conflicting rankings—a
common technique in peer selection. In line with this reasoning, define an organiza-
tion (N, G) to be highly-connected if whenever two teams share an agent in common,
they share at least two agents in common. For an example of an informative and
highly-connected organization, consider Figure 1 when G only contains teams of size
three or bigger.

The objective is to construct an incentive compatible mechanism for any highly-
connected organization. The mechanism I propose has the following ingredients: if T
contains conflicting reports, the principal first detects all agents who are potential
liars.13 If a detected agent’s report contradicts that of multiple agents, then the
mechanism identifies him as a liar and immediately disregards his report. If a pair
of agents i, j disagree on the ranking of some teams G ′ ⊂ G, but neither i nor j

contradict other agents in the organization, identifying which of them is lying is
significantly more challenging. To circumvent this, the mechanism punishes both i

and j by assigning to their mutual teams Gi∩j = {Gk ∈ G | Gk ∈ Gi ∩Gj} the lowest
ranks 1, ..., |Gi∩j|.14 All other ranks assigned by σ are set according to T \ T i, T j

and the principal’s arbitrary rule.
The final result offers two easy-to-check sufficient conditions for the existence of

an incentive compatible and efficient team ranking mechanism.

13An agent i is detected if for some pair Gl, Gm we have ti
lm ̸= tj

lm for some agent j and ti
lm, tj

lm ̸= 0.
14σ cannot assign the lowest ranks to Gi ∪ Gj since we might have G = Gi ∪ Gj . The exact order of

ranks assigned to the teams in Gi∩j does not matter, since i and j both belong to all teams in
Gi∩j .
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Theorem 3. An organization (N, G) admits an ex-post incentive compatible and
efficient team ranking mechanism if one of the following holds:
(i) There exists an agent i such that Gi = G.
(ii) The organization is highly-connected.

Generally, if there exists a central agent who belongs to every team in the orga-
nization (like in the star, for example), the principal can exclusively consider that
agent’s report and discard all other reports from her ranking. In organizations that
do not feature a central agent, the principal can still construct a mechanism pro-
vided that whenever two teams share a member in common, they share at least
two members in common. This guarantees that there are no local comparisons that
rely on a single agent’s observation. If an agent manages to lie and the principal
is unable to determine whether the agent or his colleague is at fault, the proposed
mechanism penalizes both the agent and his colleague by assigning the lowest ranks
to their mutual teams. Importantly, the proof shows that the deviating agent is
unable to improve the relative rank of a team outside this set of mutual teams.

To end this section, the following example confirms that the conditions stated
in Theorem 3 are indeed sufficient but not necessary for a mechanism to exist.

Example 3. Consider an organization made up of five agents that work in three
teams G = {{1, 2, 3}, {1, 4, 5}, {2, 3, 4, 5}}. Clearly, this organization satisfies neither
condition in Theorem 3. This is also an informative organization, since every pair
of teams shares an agent in common. Thus, if agents report truthfully, the principal
always extracts a ranking that is free of incompletions and cycles. Now observe
that agents 2, 3, 4, 5 can never profitably misreport: the only realizations of δ for
which they can misreport are those where they can create a cycle. If one of them
creates a cycle however, the mechanism σ immediately identifies him as a liar (since
his colleague’s report would not induce a cycle, and is therefore the true report).
The only agent capable of creating a cycle without directly contradicting any of
his colleagues’ reports is agent 1, since he is the only one who can locally compare
teams {1, 2, 3} and {1, 4, 5}. To mitigate this kind of manipulation, the principal
can implement a mechanism that flips agent 1’s report whenever she obtains a cycle
with no contradictory reports, and that ignores other agents’ reports if they are
identified as liars.
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6 Conclusion

This paper discusses the design of team ranking mechanisms when a principal wants
to reward groups based on a trait she cannot observe. The main message is that
agents can manipulate their teams’ rankings in ways that differ from individual
peer ranking settings. For example, even if agents care about all of their teams’
ranks, they may be willing to falsely rank one team below another if it increases the
sum of their teams’ ranks. Generically, when individuals’ payoffs are invariant to
permutations of their teams’ ranks, an impossibility result is obtained: the principal
can design an ex-post incentive compatible and efficient mechanism that ranks every
team if and only if the organizational network is a star. I also show that this result
mostly persists when the principal’s ranking is coarsened, but can be relaxed when
the principal omits some teams from the ranking.

More importantly, this paper introduces a new class of peer mechanism problems—
team evaluation problems—in which agents are asked to evaluate their teams, rather
than their peers. As the analysis illustrates, it is unclear how established results
from the peer mechanism literature extend to this new framework. For example,
how would reporting behavior change if agents were asked to nominate one of their
teams, or to flexibly grade their teams to determine the allocation of rewards? And
is it possible to design an impartial but approximately efficient mechanism when
agents have noisy information about their teams? A final direction for future re-
search is to formalize the relationship between team rankings and individual rank-
ings, when the ordering of teams is inherently related to the characteristics of team
members. For instance, what is the best method to infer the ranking of individuals
from the ranking of teams in an organization? It is my view that further exploration
of these questions could provide valuable insights to organizations that distribute
group rewards based on crowd-sourced evaluations.
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A Appendix

A.1 Proof of Lemma 1

Proof. (⇐) Let g be a connected graph in which every pair of cliques share a node
in common. Then for any two teams Cl, Cm, we have ti

l,m = 1, −1 for some agent i,
and the information in T allows us to order Cl and Cm according to ≻T.

(⇒) Let Cl, Cm be two teams that do not share a node in common. Since ti
l,m = 0

for all i, it is not possible to directly compare Cl, Cm. The only other way to compare
them is indirectly, through transitivity. Following the proof of Lemma 1 in Bloch
and Olckers (2022), consider any realization of δ in which δl, δm are consecutive in
the ranking. Such a realization clearly prevents us from comparing Cl, Cm indirectly,
thus rendering the pair uncomparable. ■

A.2 Proof of Theorem 1

Proof. (⇐) Let g be a star graph. Then there is only one central agent i who
can compare teams, and we have T = T i. In this case, agent i has no incentive
to misreport since his rank is constant across any report, σi(T i) = σi(T̃ i) for any
possible T̃ i.
(⇒) If g is not a star then it is either a triangle or it is not clique informative.

Case 1. Suppose that g is a triangle. Let i, j, k denote its nodes, and C1, C2, C3, C4

denote the teams made up of (i, j), (j, k), (i, k) and (i, j, k), respectively. The proof
strategy consists of finding a realization of team characteristics for which one agent
can increase his payoff by creating a cycle among teams C1, C2, C3. Recall that in
case of a cycle, the principal must have a rule that assigns an arbitrary ranking.
Without loss of generality, suppose the arbitrary rule assigns C1 ≻ C2 ≻ C3, when
these teams cannot be compared according to ≻T. Now consider the following
realization of team characteristics: δ1 > δ3 > δ2 > δ4. Under this realization, the
only agent capable of creating a cycle is j, by announcing C2 ≻T̃ j C1. Holding i and
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k’s announcements truthful, the full reported rankings are:

C1 ≻T i C3 ≻T i C4

C3 ≻T k C2 ≻T k C4

C2 ≻T̃ j C1 ≻T̃ j C4

All agents rank C4 last, and ≻T includes the following cycle:

C1 ≻T C3 ≻T C2 ≻T C1 ≻T C3 ≻T ...

According to the principal’s arbitrary rule, the mechanism assigns the following
ranking: C1 ≻ C2 ≻ C3 ≻ C4. To see that agent j is better off by lying, we compare
his payoff under truthful report T j and the alternative report T̃ j:

σj
(
T j, T −j

)
= (σ1, σ2, σ4) = (4, 2, 1)

σj
(
T̃ j, T −j

)
= (σ1, σ2, σ4) = (4, 3, 1)

Importantly, the principal is unable to detect who lied, since each individual report
contradicts the other two reports regarding C1, C2, C3. Therefore, we have found
a realization of team characteristics for which one agent strictly prefers lying and
cannot be detected for doing so, thus violating ex-post incentive-compatibility.15

Case 2. Suppose that g is not clique informative. By Corollary 1, g must have
n ≥ 4 nodes, m ≥ 3 cliques, and an open path of length three as featured in
Figure 2. For one of these open paths, let i, j, k, l denote the nodes and δ1, δ2, δ3

denote the characteristics of (i, j), (j, k), (k, l) respectively. Consider a realization of
δ such that δ2 > δ1 > δ3 are consecutive and are the three lowest characteristics in
the organization, and all other entries in δ are chosen arbitrarily. This realization
satisfies the following: j is the only one capable of comparing C1 and C2, and
there is no path of comparison between C1 and C3 except the one going through
C2. Without loss of generality, assume that the mechanism favors team C3 over
team C1 when they cannot be compared according to ≻T. Now let T j be agent

15The argument does not rely on a specific arbitrary rule: Fixing a rule that ranks x ≻ y ≻ z in
case of a cycle, we can find a realization where x is first and y is third in the true ranking, and
the agent who belongs to both x and y can create a cycle to his benefit.
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j’s truthful report which includes C2 ≻T j C1, and T̃ j be agent j’s report if he lies
and announces C1 ≻T̃ j C2. Holding agent k’s report truthful, including C2 ≻T k C3,
agent j’s possible payoffs are:

σj
(
T j, T −j

)
= (σ2, σ1, (σ)C∈Ci\C1,C2) = (1, 3, (σ)C∈Ci\C1,C2)

σj
(
T̃ j, T −j

)
= (σ̃1, σ̃2, (σ)C∈Ci\C1,C2) = (3, 2, (σ)C∈Ci\C1,C2)

By lying, agent j increases the sum of his ranks across teams C1, C2 without
affecting the rank of any other team he may be part of. Since j is the only node
capable of comparing C1, C2, his report will not contradict the information in T −j.
Moreover, the sequence of comparisons C1 ≻T j C2 and C2 ≻T k C3 is the only way to
compare C1, C3, thus the mechanism must assign σ1 = 3 and σ3 = 1. Therefore, this
realization of δ prevents the principal from achieving ex-post incentive compatibility
and efficiency. If we assume that the principal’s arbitrary rule favors team C1 over
team C3, the proof can easily be modified to show that agent k would strictly prefer
to lie. Since g is an arbitrary graph violating clique informativeness, we conclude
that every graph that is not clique informative does not admit an ex-post incentive
compatible and efficient mechanism. ■

A.3 Proof of Theorem 2

Proof. Let g be a star graph. By the same reasoning as Theorem 1, the central
agent i is always part of the k highest-ranking teams for any k < m and for any
choice of T i.
Let g be a triangle graph with nodes i, j, k, let δ1, δ2, δ3, δ4 denote the characteristics
of teams (i, j), (j, k), (i, k) and (i, j, k), and assume that the principal’s arbitrary
rule assigns C1 ≻ C2 ≻ C3 in case of a cycle. The mechanism σ must select k < 4
teams.

If k = 2, then the same construction of δ used in Theorem 1 shows that agent j

can improve his teams’ ranks by falsely reporting C2 ≻T̃ j C1 and creating a cycle.
In particular, he goes from being on teams ranked first, third, and fourth to teams
ranked first, second, and fourth.

If k = 3, then consider the following realization: δ4 > δ1 > δ3 > δ2. Under
truthful reporting, agent j is on the first, second, and fourth team. In total, two of
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his teams are selected by σ. By reporting C2 ≻T̃ j C1, he can create a cycle to his
advantage. Under the false report T̃ j, the principal’s mechanism assigns the lowest
rank to team C4. Consequently, three of j’s teams are selected by σ.

If k = 1, we claim that no agent can profitably misreport and that the mech-
anism σ(T) ≡≻T is ex-post incentive compatible. First, note that any realization
of δ where δ4 is the largest characteristic implies that all agents are part of the
winning team. Therefore, we can restrict our attention to any other realization of δ.
Moreover, assuming that all agents report truthfully, no single agent can misreport
regarding the ranking of team (i, j, k), as this report would contradict the other two
agents’ reports. Therefore the only remaining type of manipulation left to consider
is for an agent to misreport the local ranking of the pairs he belong to. For exam-
ple, agent k can lie about the ranking of pairs (i, k), (j, k). Fixing a realization of
δ, the only agent capable of increasing the ranking of the pairs he belongs to is the
agent capable of creating a cycle between C1, C2, C3. Note however that in order to
create a cycle between C1, C2, C3, this agent must be part of the first and last team
among C1, C2, C3 according to δ. Since we have already ruled out realizations of δ in
which δ4 is the largest number, this implies that any other realization of δ in which
some agent can create a cycle to his benefit, must be such that this agent is already
part of the team with the highest characteristic in δ. Since we have exhausted all
possible realizations of δ, we conclude that when k = 1, no agent in the triangle can
successfully manipulate the ranking.

Finally, suppose that g has an open path of length three with nodes i, j, k, l,
let δ1, δ2, δ3 denote the characteristics of (i, j), (j, k) and (k, l) respectively, and let
k < m denote the cutoff rank that determines the set of winning teams. Without
loss of generality, assume that the principal’s arbitrary rule favors C1 over C3 when
they cannot be compared. Now consider a realization such that δ3 > δ2 > δ1

are consecutive and δ3 is the k-th largest characteristic in δ. If agent j reports
truthfully, the principal assigns the following ranks: σ3 = m − k + 1, σ2 = m − k,
and σ1 = m − k − 1. In total, agent j is on no winning teams. If instead, agent j

reports C1 ≻T j C2, the principal is now unable to compare C1 and C3, and assigns
the ranks σ1 = m − k + 1, σ2 = m − k − 1 and σ3 = m − k. In total, agent j is on
one winning team, (i, j). ■
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A.4 Proof of Theorem 3

Proof. (i) Let (N, G) be a connected organization. If there exists an agent i who
belongs to every team, then ≻T i is a complete order. By the same reasoning as
Theorem 1, the mechanism σ(T) ≡ ≻T i is ex-post incentive compatible and efficient.

(ii) The mechanism described in Section 5 is ex-post efficient by construction as
it respects all non-contradictory reports in T. For sake of contradiction, suppose it is
not ex-post incentive compatible. Then there exists a highly-connected organization
(N, G) and a realization δ, for which some agent i can achieve a higher rank by
misreporting T̃ i instead of truthfully reporting T i. We arrive at a contradiction by
establishing a series of claims about the deviating agent, i.

Claim 1. An agent i who profitably misreports is detected but not identified by σ.

Proof. This follows from the structure of highly-connected organizations. If agent
i lies about the ranking of any pair Gl, Gm, there must exist another agent j who
belongs to Gl, Gm and whose truthful report disagrees with i. The mechanism σ

detects both i and j as potential liars. Moreover, agent i cannot be identified
by σ, since otherwise, only his report T̃ i would be discarded, which would violate
σi(T̃ i, T −i) ≻i σi(T i, T −i). Therefore, it must be that agent i’s report only disagrees
with agent j about some set of teams G ′ ⊆ Gi∩j. ■

Claim 2. An agent i who profitably misreports about some teams G ′ ⊆ Gi∩j must
improve the rank of at least one team Gk ∈ Gi \ Gi∩j relative to another team Gn ∈
G \ Gi.

Proof. By Claim 1, the mechanism detects i and j but cannot identify which one of
them is the liar. As punishment, each team in Gi∩j receives one of the lowest ranks
from σ = 1 through σ = |Gi∩j|. In other words, agent i is weakly worse off by lying
regarding his mutual teams with agent j. But according to our premise, agent i

must be made better off by reporting T̃ i:

σi(T̃ i, T −i) ≻i σi(T i, T −i)
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For this to hold, there must be at least one team Gk ∈ Gi \ Gi∩j and another team
Gn ∈ G \ Gi such that the following is true:

σn > σk and σ̃k > σ̃n

■

Claim 3. An agent i who misreports about some teams G ′ ⊆ Gi∩j cannot affect the
ranking of a team in Gi \ Gi∩j relative to a team outside Gi.

Proof. Consider any team Gk ∈ Gi \ Gi∩j and any other team Gn ∈ G \ Gi such
that σn > σk. We want to show that holding other agents’ reports truthful, any
alternative report T̃ i still yields σ̃n > σ̃k. If Gk, Gn were uncomparable under
truthful reporting, they must also be uncomparable when i lies because the principal
disregards T̃ i and T j, and learns no additional information to compare Gk, Gn.
Therefore she uses the same arbitrary ranking rule and we get σ̃n > σ̃k. Now
suppose that Gk, Gn were previously comparable. If Gk and Gn share an agent in
common then that same agent correctly ranks them in T \ T̃ i, T −i and the resulting
ranking includes σ̃n > σ̃k. If Gk and Gn do not share an agent in common, then they
must have been previously comparable through a transitive path of comparisons. In
other words, there exists a sequence of teams Gn = G1, ..., GM = Gk and a sequence
of agents i1, ..., iM−1 such that im ∈ Gm, Gm+1 and tim

m,m+1 = 1 for m = 1, ..., M − 1.
Moreover, since the organization is highly-connected, there also exists two agents i1′

and iM−1′ different from i, j who belong to GM−1, Gm and G1, G2, respectively:

Gn ≻ G2 ≻ ... ≻ GM−1 ≻ Gk

The only case to worry about is if this path of comparisons going from Gn to Gk

passes through two of i, j’s mutual teams, and no other agent is capable of comparing
these teams. Such a situation is depicted below, where Ga, Gb are only comparable
by i, j:

Gn ≻ Ga ≻T i,T j Gb ≻ Gk

To resolve this worry, observe that there always exists a shorter path to compare
Gn and Gk that goes through at most one of i, j’s mutual teams. In the example
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above, Ga and Gk share agent i in common, and since Gk ∈ Gi \Gi∩j it must be that
j does not belong to Gk. Since the organization is highly-connected, there exists
some agent i′ ̸= i, j who can compare Ga and Gk directly, avoiding the path going
through Ga, Gb. This new path is shorter, and does not rely on the information in
T i, T j. This argument can be used to shorten any path that goes through multiple
of agent i, j’s mutual teams, to one that goes through only one of their mutual teams
and does not rely on T i, T j.

To conclude, there is always enough information in T\T i, T j to infer σ̃n > σ̃k. As
we have exhausted all cases, we confirm that T̃ i does not affect the relative ranking
of any team Gk ∈ Gi \ Gi∩j relative to another team Gn ∈ G \ Gi. ■

Now to put everything together. By Claim 1, for an agent i to profitably misre-
port without being identified it must be that he is only lying about a subset of his
mutual teams Gi∩j with some agent j. To achieve a higher payoff despite the prin-
cipal’s punishment, his misreporting must lead at least one of his teams Gk outside
of Gi∩j to now rank above some team Gn ∈ G \ Gi∩j where it was previously not the
case under T i, T −i. But as the last claim makes clear, no alternative report T̃ i can
possibly alter the relative ranking of Gk and Gn, which concludes our proof that the
proposed mechanism satisfies ex-post incentive compatibility. ■
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